
A
cc

es
s

Design Options for

Welcoming Interests & Identities

Give students choices (choose project,
software, topic)

Encourage students to make projects
relevant to culture and interests

Allow for differences in pacing and length of
work sessions

Provide options for managing background
noise and visual stimulation, both in the
general classroom environment (e.g., listening
to music with headphones or using noise-
canceling headphones) and within CS online
and physical tools

Provide opportunities for exploring creative
uses of coding (e.g., stories or games)

Ensure the CS learning environment is
welcoming and inclusive of all learners (e.g.,
proactively attending to approaches to
promote active engagement by all learners,
ensuring physical environment is safe and
accessible, establishing class norms for
respectful sharing)

Design Options for

Perception

Present information through multiple
modalities (visual, auditory, and tactile)

Model computing tasks and activities using
both physical and visual representations (e.g.,
interactive whiteboards, videos,
manipulatives)

Provide access to modeled code while
students work independently

Provide access to video tutorials of
computing tasks with closed captioning

Use accessible CS tools, applications, and
websites that allow the students to adjust
visual and auditory settings (e.g., font size &
contrast)

Introduce diverse role models and
contributions in CS (e.g., computer scientists
who are women, people with disabilities, and
people from different cultural and language
backgrounds)

Highlight the contributions of individuals
from underrepresented groups in CS

Design Options for

Interaction

Include hands-on, physical computing
activities (e.g., CS Unplugged, using
microcontrollers) that allow students to
demonstrate abstract concepts through
movement and tangible interaction

Ensure appropriate use of assistive
technologies like larger or smaller mice,
alternative keyboards, or touch-screen
devices to optimize access to CS tools and
curricula to comply with students’
Individualized Education Programs or 504
Plans

 
Offer students the choice to code using
different formats, such as block-based
programming, text-based coding, or voice-
activated commands, and/or provide options
for students to switch modalities

 
Incorporate a variety of accessible CS tools
that include a range of options to increase
learner interaction for students with a range
of functional needs

Multiple Means of

Action & Expression
Multiple Means of

Engagement
Multiple Means of

Representation

Israel, M., Weisberg, L., Cobo, A., & Lash, T. (2024). Universal Design for Learning Guidelines for Computer
Science Education 2.0. UDL4CS Project. CS Everyone Center for Computer Science Education.



S
up

p
or

t

Design Options for

Sustaining Effort & Persistence

Regularly introduce and refer back to
computing and content goals in learner-
friendly language such as “I can” statements

 
Provide differentiated tasks with various
levels of challenge, offering extensions or
additional support when appropriate such as
using multiple entry point activities (e.g.,
worked examples, buggy projects, exploded
code/Parsons Problems, and extensions)

Explicitly teach and encourage peer
collaboration

Implement pair programming and group work
with clearly defined roles

Provide real-world CS examples where
persistence leads to innovative solutions

Recognize students for demonstrating
perseverance and problem solving in the
classroom

Create a classroom culture that celebrates
diverse perspectives and approaches in CS

Offer timely, actionable feedback that
focuses on specific improvements and next
steps

Design Options for

Language & Symbols

Teach and review content-specific and CS-
related vocabulary (e.g., conditional
statement, variables, nested loops) by
anchoring new concepts to known
knowledge and by using multiple approaches
(e.g., word walls, reinforcements through
modeled activities)

Post anchor charts and provide reference
sheets with images of blocks or with
common syntax when using text

Allow students to use coding languages and
tools in their native language or offer dual-
language resources to support multilingual
learners

Ensure that instructional materials are devoid
of biased or exclusionary language or
perspectives (e.g., visuals only showing men
as programmers)

 
Ensure that programming examples provide
diverse representations in terms of gender,
race, culture, and ability

Use a variety of media (e.g., videos,
animations, diagrams) to explain key CS
concepts

Design Options for

Expression & Communication

Allow students to communicate their
understanding and creativity through various
media (e.g., pseudocode, video explanations,
digital presentations, or physical
demonstrations)

Give opportunities to practice computing
skills and content through projects that build
on prior lessons

Provide sentence starters or checklists for
communicating with others, explaining work,
and offering feedback

Provide unplugged activities, physical
manipulatives (e.g., command cards or block-
based coding pieces), and/or robotics for
hands-on, tangible engagement in computing

Use scaffolding techniques, such as starter
code or guided tutorials, to support students
in mastering complex CS tasks gradually

Guide students in reflection of how certain
modes of communication in CS might be
more or less accessible to themselves and to
others (e.g., use of only visual or auditory
outputs may be inaccessible to some peers) 

Multiple Means of

Action & Expression
Multiple Means of

Engagement
Multiple Means of

Representation

Israel, M., Weisberg, L., Cobo, A., & Lash, T. (2024). Universal Design for Learning Guidelines for Computer
Science Education 2.0. UDL4CS Project. CS Everyone Center for Computer Science Education.



E
xe

cu
ti

ve
 F

un
ct

io
n

Israel, M., Weisberg, L., Cobo, A., & Lash, T. (2024). Universal Design for Learning Guidelines for Computer
Science Education 2.0. UDL4CS Project. CS Everyone Center for Computer Science Education.

Design Options for

Emotional Capacity

Clearly communicate expectations for
computing tasks, peer collaboration, and
help-seeking in multiple ways (e.g., verbally,
written, signage)

Break up activities with reflective practices
where students assess their own progress on
their computational activities and consider
how their work impacts group collaboration
(e.g., journaling, classroom discussion, “turn
and talks”) 

Use formative and summative assessments
that evaluate both content and process (e.g.,
rubrics, exit slips)

Acknowledge difficulty and frustration, and
model strategies for dealing with frustration
or conflict

Guide students to reflect on the real-world
implications of their work, prompting them to
consider how their programs and designs can
be accessible and beneficial to a variety of
users

Multiple Means of

Engagement

Design Options for

Building Knowledge

Activate students' prior knowledge through
connections to previous lessons or
opportunities to relate their real-world
experiences to new CS concepts

State and reinforce lesson goals and learning
objectives (e.g., through “ I can” statements) 

Use analogies and other anchoring
techniques to make cross-curricular
connections (e.g., comparing debugging
code to the editing process in writing)

Provide graphic organizers for students to
“translate” programs into pseudocode

Provide multiple ways for understanding CS
through diverse methods (e.g., unplugged
activities, visual tutorials, or narrative-driven
projects)

Explore how students’ unique cultural,
linguistic, or personal backgrounds influence
their approach to learning CS

Provide opportunities for students to apply
CS concepts learned in class to new contexts

Multiple Means of

Representation

Design Options for

Strategy Development

Guide students in setting clear, achievable
goals for short- and long-term CS projects
(e.g., implement planned checkpoints and
opportunities for self-assessment)

Provide exemplars or worked examples to
scaffold project planning 

Embed prompts throughout lessons to
encourage students to anticipate potential
issues in their projects (e.g., stop and plan,
test, debug)

Provide graphic organizers to facilitate
planning, goal-setting, and debugging

Provide strategies for working independently
through challenging computational activities
(e.g., rubber duck debugging, Debugging
Detective, think-alouds)

Encourage students to ask questions as
comprehension checkpoints

Empower students to recognize and
challenge inequitable or unjust CS practices

Multiple Means of

Action & Expression


